Requesting Assistance Understanding Zipline Code Block

First of all, thank you to the author Stefan, this book seems to be very comprehensive. I am new in my algorithmic trading journey so this book is quite challenging.
The code has been working for the most part, and I have just ran this piece of zipline code:

%%zipline --start 2015-1-1 --end 2018-1-1 --output single_factor.pickle --no-benchmark --bundle quandl

from zipline.api import (
    attach_pipeline,
    date_rules,
    time_rules,
    order_target_percent,
    pipeline_output,
    record,
    schedule_function,
    get_open_orders,
    calendars
)
from zipline.finance import commission, slippage
from zipline.pipeline import Pipeline, CustomFactor
from zipline.pipeline.factors import Returns, AverageDollarVolume
import numpy as np
import pandas as pd

MONTH = 21
YEAR = 12 * MONTH
N_LONGS = N_SHORTS = 25
VOL_SCREEN = 1000


class MeanReversion(CustomFactor):
    """Compute ratio of latest monthly return to 12m average,
       normalized by std dev of monthly returns"""
    inputs = [Returns(window_length=MONTH)]
    window_length = YEAR

    def compute(self, today, assets, out, monthly_returns):
        df = pd.DataFrame(monthly_returns)
        out[:] = df.iloc[-1].sub(df.mean()).div(df.std())


def compute_factors():
    """Create factor pipeline incl. mean reversion,
        filtered by 30d Dollar Volume; capture factor ranks"""
    mean_reversion = MeanReversion()
    dollar_volume = AverageDollarVolume(window_length=30)
    return Pipeline(columns={'longs': mean_reversion.bottom(N_LONGS),
                             'shorts': mean_reversion.top(N_SHORTS),
                             'ranking': mean_reversion.rank(ascending=False)},
                    screen=dollar_volume.top(VOL_SCREEN))


def exec_trades(data, assets, target_percent):
    """Place orders for assets using target portfolio percentage"""
    for asset in assets:
        if data.can_trade(asset) and not get_open_orders(asset):
            order_target_percent(asset, target_percent)


def rebalance(context, data):
    """Compute long, short and obsolete holdings; place trade orders"""
    factor_data = context.factor_data
    record(factor_data=factor_data.ranking)

    assets = factor_data.index
    record(prices=data.current(assets, 'price'))

    longs = assets[factor_data.longs]
    shorts = assets[factor_data.shorts]
    divest = set(context.portfolio.positions.keys()) - set(longs.union(shorts))

    exec_trades(data, assets=divest, target_percent=0)
    exec_trades(data, assets=longs, target_percent=1 / N_LONGS)
    exec_trades(data, assets=shorts, target_percent=-1 / N_SHORTS)


def initialize(context):
    """Setup: register pipeline, schedule rebalancing,
        and set trading params"""
    attach_pipeline(compute_factors(), 'factor_pipeline')
    schedule_function(rebalance,
                      date_rules.week_start(),
                      time_rules.market_open(),
                      calendar=calendars.US_EQUITIES)
    context.set_commission(commission.PerShare(cost=.01, min_trade_cost=0))
    context.set_slippage(slippage.VolumeShareSlippage())


def before_trading_start(context, data):
    """Run factor pipeline"""
    context.factor_data = pipeline_output('factor_pipeline')

Questions:

  1. How is the code computing mean reversion exactly? Is it using technical indicators to compute overbought or oversold levels? How is the code computing cases where the price has deviated too far from the mean?
  2. What financial instruments are being analyzed? I assume stocks, but what stocks? What kind of data pertaining to stocks? Which tickers? OHLCV or orderbook data?
  3. Does my output look correct?

period_open	period_close	pnl	capital_used	orders	long_exposure	transactions	positions	short_exposure	starting_exposure	...	excess_return	treasury_period_return	trading_days	period_label	sharpe	algorithm_period_return	benchmark_period_return	benchmark_volatility	factor_data	prices
2015-01-02 21:00:00+00:00	2015-01-02 14:31:00+00:00	2015-01-02 21:00:00+00:00	0.000000	0.000000e+00	[]	0.000	[]	[]	0.000	0.000	...	0.0	0.0	1	2015-01	NaN	0.000000	0.0	NaN	NaN	NaN
2015-01-05 21:00:00+00:00	2015-01-05 14:31:00+00:00	2015-01-05 21:00:00+00:00	0.000000	0.000000e+00	[{'id': '4f98521494d1425c91f1485f915ae278', 'd...	0.000	[]	[]	0.000	0.000	...	0.0	0.0	2	2015-01	NaN	0.000000	0.0	0.0	Equity(0 [A]) 2707.0 Equity(2 [AAL]) ...	Equity(0 [A]) 39.800 Equity(2 [AAL])...
2015-01-06 21:00:00+00:00	2015-01-06 14:31:00+00:00	2015-01-06 21:00:00+00:00	-3799.475085	-3.118062e+06	[{'id': '4f98521494d1425c91f1485f915ae278', 'd...	4731525.565	[{'amount': 18433, 'dt': 2015-01-06 21:00:00+0...	[{'sid': Equity(749 [CVA]), 'amount': 18433, '...	-1617262.705	0.000	...	0.0	0.0	3	2015-01	-9.165151	-0.000380	0.0	0.0	Equity(0 [A]) 2707.0 Equity(2 [AAL]) ...	Equity(0 [A]) 39.800 Equity(2 [AAL])...
2015-01-07 21:00:00+00:00	2015-01-07 14:31:00+00:00	2015-01-07 21:00:00+00:00	12850.580000	0.000000e+00	[]	4757100.850	[]	[{'sid': Equity(749 [CVA]), 'amount': 18433, '...	-1629987.410	3114262.860	...	0.0	0.0	4	2015-01	4.933673	0.000905	0.0	0.0	Equity(0 [A]) 2707.0 Equity(2 [AAL]) ...	Equity(0 [A]) 39.800 Equity(2 [AAL])...
2015-01-08 21:00:00+00:00	2015-01-08 14:31:00+00:00	2015-01-08 21:00:00+00:00	63721.760000	0.000000e+00	[]	4835941.280	[]	[{'sid': Equity(749 [CVA]), 'amount': 18433, '...	-1645106.080	3127113.440	...	0.0	0.0	5	2015-01	8.194658	0.007277	0.0	0.0	Equity(0 [A]) 2707.0 Equity(2 [AAL]) ...	Equity(0 [A]) 39.800 Equity(2 [AAL])...
...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...	...
2017-12-22 21:00:00+00:00	2017-12-22 14:31:00+00:00	2017-12-22 21:00:00+00:00	-16960.030000	0.000000e+00	[]	5266915.040	[]	[{'sid': Equity(672 [CPRT]), 'amount': -10147,...	-4598653.320	685221.750	...	0.0	0.0	751	2017-12	0.406793	0.102076	0.0	0.0	Equity(0 [A]) 2393.0 Equity(1 [AA]) ...	Equity(0 [A]) 67.66 Equity(1 [AA]) ...
2017-12-26 21:00:00+00:00	2017-12-26 14:31:00+00:00	2017-12-26 21:00:00+00:00	-43497.970000	0.000000e+00	[{'id': '8b268f7c87f64aa29b0ee185f14e14c6', 'd...	5217746.950	[]	[{'sid': Equity(672 [CPRT]), 'amount': -10147,...	-4592983.200	668261.720	...	0.0	0.0	752	2017-12	0.391704	0.097727	0.0	0.0	Equity(0 [A]) 2363.0 Equity(1 [AA]) ...	Equity(0 [A]) 67.25 Equity(1 [AA]) ...
2017-12-27 21:00:00+00:00	2017-12-27 14:31:00+00:00	2017-12-27 21:00:00+00:00	41248.841483	1.940099e+06	[{'id': '8b268f7c87f64aa29b0ee185f14e14c6', 'd...	3966687.510	[{'amount': 10147, 'dt': 2017-12-27 21:00:00+0...	[{'sid': Equity(54 [ADSK]), 'amount': 4230, 'c...	-5240774.395	624763.750	...	0.0	0.0	753	2017-12	0.405300	0.101852	0.0	0.0	Equity(0 [A]) 2363.0 Equity(1 [AA]) ...	Equity(0 [A]) 67.25 Equity(1 [AA]) ...
2017-12-28 21:00:00+00:00	2017-12-28 14:31:00+00:00	2017-12-28 21:00:00+00:00	25543.807669	-5.744239e+04	[{'id': 'e452bf2065014f2380e23766eb3f7aec', 'd...	3967663.630	[{'amount': 2082, 'dt': 2017-12-28 21:00:00+00...	[{'sid': Equity(54 [ADSK]), 'amount': 4230, 'c...	-5158764.315	-1274086.885	...	0.0	0.0	754	2017-12	0.413599	0.104406	0.0	0.0	Equity(0 [A]) 2363.0 Equity(1 [AA]) ...	Equity(0 [A]) 67.25 Equity(1 [AA]) ...
2017-12-29 21:00:00+00:00	2017-12-29 14:31:00+00:00	2017-12-29 21:00:00+00:00	47298.175000	0.000000e+00	[]	3953902.420	[]	[{'sid': Equity(54 [ADSK]), 'amount': 4230, 'c...	-5097704.930	-1191100.685	...	0.0	0.0	755	2017-12	0.429063	0.109136	0.0	0.0	Equity(0 [A]) 2363.0 Equity(1 [AA]) ...	Equity(0 [A]) 67.25 Equity(1 [AA]) ...
755 rows × 39 columns

Thanks